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ABSTRACT

The effects of irregular in situ ocean sampling on estimates of annual globally integrated upper ocean heat
content anomalies (OHCA) are investigated for sampling patterns from 1955 to 2006. An analytical method
is presented for computing the effective area covered by an objective map for any given in situ sampling
distribution. To evaluate the method, appropriately scaled sea surface height (SSH) anomaly maps from
Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO) are used as a proxy for
OHCA from 1993 to 2006. Use of these proxy data demonstrates that the simple area integral (SI) of such
an objective map for sparse datasets does not agree as well with the actual integral as the weighted integral
(WI), defined as the simple integral weighted by the ratio of the total area over the “observed” area. From
1955 to 1966, in situ ocean sampling is inadequate to estimate accurately annual global integrals of the proxy
upper OHCA. During this period, the SI for the sampling pattern of any given year underestimates the 13-yr
trend in proxy OHCA from 1993 to 2006 by around 70%, and confidence limits for the WI are often very
large. From 1967 to 2003 there appear to be sufficient data to estimate annual global integrals. Limited by
the constraints of this analysis, the SI for any given year’s sampling pattern still underestimates the 1993–
2006 13-yr trend in the proxy by around 30%, but the WI matches the trend well with small confidence
limits. For 2004 through 2006 in situ sampling, with near-global in situ Argo data coverage, the 1993–2006
13-yr trend in the proxy is equally well represented by the SI or WI.

1. Introduction

Most of the earth’s warming signal arising from an-
thropogenic climate change is thought to reside in the
upper ocean (Hansen et al. 2005; Levitus et al. 2005).
To understand past and present global warming trends,
and so to provide data for improvement of predictions
of future changes, it is necessary to refine estimates of
global upper ocean heat content anomalies (OHCA)

and their uncertainties. Here the effect of the irregular
sampling of the world’s ocean over the last half century
on annual global OHCA estimates is quantified, and a
different method of integration that may improve those
estimates is proposed.

There are several ways to compute the global integral
of mapped in situ data (Wunsch et al. 2007; Gille 2008).
Two of them are compared here. One of these is a
straightforward area integral of objectively mapped
data. Because objective maps relax back toward the
mean in data-sparse regions, this method generally as-
sumes zero anomalies in regions that are not sampled.
It will be referred to as the simple integral (SI) through-
out this paper. The second method can be thought of as
a weighted area integral only over regions with good
data coverage weighted by the fraction of the ocean
used where there are observations. This method as-
sumes that the spatial mean of the anomalies in the
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unsampled regions is the same as the mean for the
sampled regions. It will be referred to as the weighted
integral (WI) throughout the paper.

Irregular historical in situ sampling of the oceans in
both space and time complicates model–data compari-
sons. For instance, the variability in the global integral
of upper OHCA depends on how data-poor regions are
treated when integrating. It turns out that the SI of
objective maps has different variability than the WI
(Gregory et al. 2004; AchutaRao et al. 2006; Gille
2008), making it difficult to validate the warming signal
in a given model by comparing globally integrated
model OHCA products to the SI of data-based OHCA
maps. Furthermore, local regional trends in OHCA are
large and variable, with some regions cooling for a time
while other regions warm (e.g., Harrison and Carson
2007). Because of this small-scale variability in the de-
cadal trends, the WI assumption that the trend in
sampled regions is the same as in unsampled regions
only holds on larger scales and not on regional scales.
This variability, combined with sparse data coverage,
has led some to conclude that historical data may not be
sufficient to discern a global warming trend (Harrison
and Carson 2007).

One method used to improve comparisons of models
with existing data is to sample model output at the same
locations and times where the actual ocean is suffi-
ciently sampled (e.g., Gregory et al. 2004; AchutaRao
et al. 2006; Pierce et al. 2006). In these comparisons
subjective criteria have been used to select areas where
the number of observations is deemed sufficient to
make a comparison. The WI generated from observa-
tional data and identically sampled model output can
significantly improve agreement in OHCA compari-
sons. These comparisons suggest that these models are
doing a good job of simulating global ocean heat con-
tent increases that are primarily due to anthropogenic
climate change.

In situ ocean observation-based estimates of the
globally integrated OHCA time series are a useful
model benchmark and an important diagnostic for
changes in the earth’s climate system (Hansen et al.
2005; Levitus et al. 2005). Recently observational esti-
mates of the global integral of OHCA tend to be cal-
culated as the SI of objective maps (Willis et al. 2004;
Levitus et al. 2005; Ishii et al. 2006). While the com-
plexity and sophistication of these objective analyses
varies, they nearly all have anomalies that relax toward
zero in areas of sparse data coverage. The integrals of
these maps are affected by this tendency. Here a
method for computing the fraction of the “observed”
area in an objective map is derived (see appendix) from
the scales and methods used in the mapping. The SI and

WI are compared side by side. To quantify the effects of
irregular sampling on these integrals delayed-mode Ar-
chiving, Validation, and Interpretation of Satellite
Oceanographic data (AVISO) satellite sea surface
height (SSH) anomalies are scaled appropriately to
produce a synthetic data-based proxy for the global up-
per OHCA record from 1993 through 2006. Satellite
SSH fields are not truly global, have possibly undefined
errors, and, along with heat content, include signals
from freshwater variations (Willis et al. 2004; Wunsch
et al. 2007). Besides including freshwater variations and
deep variability, satellite SSH fields also contain mass
(bottom pressure) signals (Gill and Niiler 1973; Ponte
1999). These potential complications notwithstanding,
the SSH maps constitute a useful, continuous, high-
resolution, and nearly global observational record over
the ice-free oceans that have been shown to be corre-
lated with in situ upper OHCA observations (White
and Tai 1995; Gilson et al. 1998; Willis et al. 2004).
However, there are regions where the correlation is not
strong (Fig. 4 in Willis et al. 2004). For the purpose of
this analysis, the synthetic estimate of OHCA from
SSH is considered the complete global estimate of
OHCA. The synthetic OHCA record from 1993
through 2006 is subsampled at the locations and time of
the year that in situ data were collected for all years
between 1955 and 2006 to see how yearly sampling pat-
terns affect both the linear trend in globally integrated
OHCA from 1993 to 2006 and sampling errors on the
global integrals during those years.

Applying these methods to sampling patterns for any
year prior to 1993 indicates how well the historical sam-
pling for that year would have performed in estimating
the global integral and its trend over the 13 yr of
AVISO SSH. Trends in OHCA vary from decade to
decade and location to location (Harrison and Carson
2007). These decadal changes make estimates of pre-
1993 sampling errors likely to be only a rough approxi-
mation of the true sampling errors.

Here the focus is on how historical sampling of world
oceans affects global annual OHCA values and their
errors along with developing and evaluating an appro-
priate scheme for constructing the WI of OHCA maps
from in situ data. The scheme derived here estimates
the effective area or “observed” area used in the WI
from the scales and methods used in the mapping.
Hence the effective area is estimated from the mapping
procedures used, rather than using a subjective selec-
tion criterion such as the number of observations in a
bin. Unknown, potentially large, and difficult to quan-
tify instrument biases that may affect the SSH fields
(Wunsch et al. 2007) are ignored. Possible errors in the
covariance function and the climatology that could im-
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pact estimates of upper OHCA based on in situ data
(AchutaRao et al. 2007; Wunsch et al. 2007) are also
ignored.

The data used to define the in situ sampling distri-
bution, the satellite SSH anomaly fields used as a proxy
for upper OHCA, and the objective mapping tech-
niques are discussed in section 2. The spatial and tem-
poral structures of the data distribution are analyzed in
section 3. The effects of irregular sampling are investi-
gated in section 4 for 13-yr trends and in section 5 for
3–13-yr trends. An estimate of the sampling error on
the global integral of OHCA is computed in section 6.
The results are discussed and summarized in section 7.

2. Data and mapping

In situ ocean temperature measurements are a mix-
ture of data mostly from reversing thermometers used
at hydrographic stations, mechanical bathythermo-
graph (MBT) profiles, expendable bathythermograph
(XBT) profiles, ship board conductivity–temperature–
depth (CTD) profiles, moored buoy thermistor records
(many from the Tropical Atmosphere Ocean array),
and autonomous profiling CTD float data (primarily
from Argo). The data used here were obtained from
the World Ocean Database 2005 (Boyer et al. 2006), the
Global Temperature–Salinity Profile Project (GTSPP),
and the Argo Global Data Assembly Centers. Because
of known but as yet not completely resolved biases
among data from different instrument types (Achuta-
Rao et al. 2007; Gouretski and Koltermann 2007;
Wijffels et al. 2008; Willis et al. 2008) no attempt is
made here to produce a heat content curve from in situ
observations. Instead, the effects of irregular sampling
are analyzed using a synthetic estimate of OHCA from
SSH.

Nonetheless, the in situ data were subject to some
basic quality control (QC) procedures to identify valid
in situ data locations in the historical record. To remove
duplicates between the different databases, profiles
within 15 min in time and 3.6 arc seconds in space were
removed from the GTSPP. This process was repeated
twice. Profiles with insufficient vertical resolution were
also discarded. To have sufficient vertical resolution,
the upper 400 m of the profiles were required to contain
at least six data points flagged as good, a good mea-
surement in the upper 30 m, a maximum good measure-
ment depth exceeding 300 m, and depth spacing no
more than twice that of the standard depths used in the
World Ocean Database. Retained profiles were then
subjected to further QC in World Meteorological Or-
ganization (WMO) squares. Squares with small num-
bers of profiles were combined. Then, by visual inspec-

tion, profiles with obviously spurious data compared to
the bulk of the data in each square were discarded.
Finally, OHCA estimates within these squares that fell
outside of four standard deviations were discarded. The
profiles that were left were considered good profiles,
and SSH subsampled at their locations and times were
used to estimate the depth-integrated OHCA in the
upper 750 m.

Mapped satellite SSH anomaly estimates come from
subsampled combined AVISO SSH. This product is an
optimal merging of SSH from multiple platforms:
Ocean Topography Experiment (TOPEX)/Poseidon,
Jason, (European Remote Sensing Satellite) ERS-1/2,
and Environmental Satellite (Envisat). The resulting
product has 7-day temporal and approximately 150–
200-km spatial resolution (Ducet et al. 2000). In this
analysis SSH anomalies are used as a surrogate for
upper ocean heat content anomalies by exploiting the
strong correlations between SSH anomalies and avail-
able in situ estimates of OHCA (White and Tai 1995;
Gilson et al. 1998; Willis et al. 2004; Lyman et al. 2006).
These correlation coefficients vary geographically.
However, here a global average regression coefficient
of 51 ! 13 zeta-joules cm"1 is used (Lyman et al. 2006),
where the error represents the spatial standard devia-
tion.

Objective mapping (e.g., Wunsch 1996) covariance
functions, correlation length scales, and signal-to-noise
ratios used here follow those adopted by Willis et al.
(2004) and used again in Lyman et al. (2006). These
techniques, functions, and values apply to both the ob-
jective maps generated from subsampled AVISO SSH
fields and to the fraction of “observed” area computed
for these maps (see appendix). Following Willis et al.
(2004), the record-length mean is removed from each
location from the SSH fields. Then, the annual cycle, in
this case based on quarterly means of the 1993–2006
anomalies of the AVISO SSH record, is removed. As
with the in situ OHCA, removing the annual cycle
based on quarterly means leaves some of the annual
variability in the data, producing fields that are compa-
rable to in situ observations. The resulting fields are
then subsampled at the location and time of the year for
a given year’s in situ data sampling and grouped into
1-yr bins centered on the middle of each year. These
grouped data are then spatially mapped. The mapping
is a simple objective map containing both a small-scale
(#100 km) and a large-scale (#1000 km) in its covari-
ance function (Willis et al. 2004). The correlation func-
tion used in the objective map also includes a signal-to-
noise ratio along the diagonal, to account for unre-
solved geophysical variability at time scales less than a
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year and is based on the Zang and Wunsch (2001) spec-
tra.

3. Data distribution

In situ upper ocean sampling has varied substantially
both spatially and temporally over the last half century.
Between 1955 and 1966, the percentage of the “ob-
served” ice-free upper ocean increased from near 20%
to 40% (Fig. 1). With widespread XBT use starting in
1967, the fraction of the ocean represented in that
year’s annual map rose to 48%. This fraction continued
to rise to around 75% during the 1980s and 1990s as
programs such as the World Ocean Circulation Experi-
ment (WOCE) were implemented. WOCE spun down
in the late 1990s, and the sampling area decreased to
63% by 2000. Some of this decrease may be eliminated
for the last decade once data have made their way from
originators to the World Ocean Database, as there can
be a multiyear lag for this process. In addition, efforts
to gather historical data by National Oceanic and At-
mospheric Administration’s (NOAA) National Ocean
Data Center have and should continue to help to in-
crease data coverage in past years. The percentage of
area sampled increases again after 2000 as more and
more Argo autonomous profiling CTD floats begin re-
porting data in real time. For every succeeding year

since 2004, as Argo has been approaching its target of
global sampling with 3000 active floats (achieved by
November 2007), the area sampled has been a record,
with 89% coverage reached in 2006.

The method for computing the “observed” area (see
appendix) takes into account the covariance functions,
correlation length scales, and error energies used in the
objective mapping described in section 2. This method
contrasts with the practice of using subjective criteria
on a number of observations in an averaging bin to
select bins with sufficient measurements for use in com-
putation of a WI or other quantity. The data-based
estimate of signal-to-noise ratio added to the diagonal
of the correlation function results in low area coverage
in regions with few observations.

The spatial distribution of observations evolves with
changing methods of data collection. In the pre-XBT
era, here analyzed starting in 1955 and ending in 1966,
the upper ocean was sparsely sampled. Most of the ob-
servations were concentrated near coastlines in the
Northern Hemisphere (Fig. 2). As XBTs came into use,
the spatial coverage dramatically increased from 1967
through 2003 (Fig. 3). For this period most of the
Northern Hemisphere is well sampled with contrasting
sparse coverage in the Southern Hemisphere, where
shipping lanes are more widely spaced. From 2004
through 2006, Argo profiling CTD float data provide

FIG. 1. Percentage of global ice-free ocean sampled for in situ upper (0–750 m) OHCA for
each calendar year defined by Eq. (A8).
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a fairly even spatial distribution of data throughout
most of the ice-free oceans for in situ OHCA estimates
(Fig. 4).

AVISO SSH maps are available from 1993 through
2006. During this period in situ sampling of OHCA
changed from primarily XBT data along shipping
routes to more even global coverage by the autono-
mous profiling CTD floats of Argo. This change is evi-
dent in the standard deviation of the “observed” sam-
pling areas for annual objective maps of in situ OHCA

data during this time period (Fig. 5). Large sampling
variations are evident south of about 40°S in the Pacific
Ocean, and even farther north in parts of the South
Atlantic and Indian Oceans. The irregular and poor
sampling in the Southern Ocean prior to Argo contrib-
utes to uncertainty of global OHCA integrals (Achuta-
Rao et al. 2007; Gille 2008). For example, sparse and
seasonally biased sampling in the Southern Ocean
could corrupt the estimates of means and seasonal
cycles, and thus annual OHCA estimates. While these

FIG. 3. Mean of annual “observed” area coverage from 1967 to 2003.

FIG. 2. Mean of annual “observed” area coverage computed from Eq. (A7) for years
1955–66.
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are real and important problems, they are not investi-
gated here nor do they affect the results presented here,
as the AVISO SSH records used here as a proxy for
OHCA are well resolved.

4. 13-yr warming trends

The fully resolved synthetic SSH estimate of the up-
per OHCA curve has a warming trend of 0.9 ! 0.1
W m"2 from 1993 through 2006 (Fig. 6, gray line), as

estimated by a linear fit. Here and throughout the pa-
per, OHCA trends are estimated by linear fits and are
normalized to the area of the earth (Levitus et al. 2005;
Lyman et al. 2006). As mentioned in section 2, the syn-
thetic estimate contains signals besides just upper
OHCA (most obviously, changes in ocean mass), is
likely an overestimate of the true warming of the upper
ocean (Willis et al. 2004) and should not be taken as an
accurate estimate of the actual ocean warming.

Trend errors are expressed as 95% confidence inter-

FIG. 5. Standard deviation of annual “observed” area coverage from 1993 to 2006 based on
14 one-yr maps.

FIG. 4. Mean of annual “observed” area coverage from 2004 to 2006.
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vals of the slopes of the linear fits. All estimates of
standard errors in this paper reflect statistical error due
to how well a line fits a set of data or how closely
integrals of subsampled synthetic OHCA can repro-
duce the integral of the whole map, and are therefore
limited to the confines of the assumptions of this sub-
sampling exercise. These limitations include uncertain-
ties due to the fact that SSH contains variability other
than upper OHCA (as discussed above). Additionally,
the time period over which the 13-yr trend is estimated
(1993–2006) contains different phases of known modes
of interannual variability such as El Niño–Southern Os-
cillation (ENSO), the southern annular mode (SAM),
the Indian Ocean Dipole (IOD), the North Atlantic
Oscillation (NAO), the Pacific decadal oscillation
(PDO), the Atlantic multidecadal oscillation (AMO),
and Arctic Oscillation (AO) than from sampling peri-
ods from which the trends are estimated (1955–2006).
These uncertainties, along with possible unknown in-
strument biases that could affect the correlation be-
tween SSH and upper OHCA, would more than likely
increase the estimate of the standard error shown in
this paper.

To examine the effects of irregular sampling on the
13-yr warming trend, the synthetic upper OHCA was
subsampled at the in situ data locations from 1993 to
2006. The resulting data were mapped and then spa-
tially integrated. When spatially integrating the sub-
sampled global OHCA maps it is necessary to define
the method of computing a global integral (see appen-
dix). Two of the simplest choices are 1) the SI, where

OHCA values are assumed to tend toward zero in lo-
cations and times where there are few measurements;
and 2) a WI, where the values of OHCA in regions that
are not “observed” are assumed to be the same as the
global mean in the “observed” regions (see appendix).

Both of the methods are able to produce a trend
within the confidence intervals on the complete syn-
thetic trend (Fig. 6). The SI underestimates the syn-
thetic trend at 0.8 ! 0.1 W m"2 while the WI overes-
timates the synthetic trend at 1.0 ! 0.1 W m"2. Neither
trend estimate is significantly different from the trend
for the fully resolved dataset, but individually they
barely agree with each other. While this assessment of
how the in situ sampling from 1993 through 2006 re-
produces the synthetic warming trend over that period
is useful, it says little of how the different sampling eras
and integration assumptions affect the estimates of the
synthetic trend.

By subsampling every year of the 13-yr synthetic up-
per OHCA like the data distribution for a given year, it
is possible to construct a 13-yr time series of annual
upper OHCA estimates for that single year’s sampling
pattern. This subsampling strategy differs from the one
just presented in that it yields an annual upper OHCA
time series from 1993 through 2006 for each year’s data
distribution. The results can be used to estimate sam-
pling errors for any given year and assess the two dif-
ferent methods for global integration of OHCA. Be-
cause this strategy depends only on knowing the sam-
pling pattern for the year under study, it can be applied
to assess errors associated with historical sampling for
years before AVISO SSH was available. The estimates
of the trend for historical sampling before 1993 are only
applicable to the complete trend inasmuch as the 1993
to 2006 period represents the time period in which the
data were taken.

The SI for sparse historical sampling patterns gener-
ally produces underestimates of the actual 1993–2006
synthetic warming trend. For instance, the very sparse
1955 sampling pattern produces a very low, 0.1 ! 0.1
W m"2 (Fig. 7, top), estimate of the 13-yr synthetic
warming trend from the SI. This estimate is only a small
fraction of the complete synthetic warming trend of
0.9 ! 0.1 W m"2. Even the much better sampling pat-
tern for 1995 results in a SI for the 1993–2006 period
that estimates a synthetic warming trend, 0.7 ! 0.1
W m"2 (Fig. 7, bottom), that is significantly less than
the complete synthetic trend.

In situ ocean sampling patterns for every year (but
the last few years) of the last half century result in
significant underestimates of the 1993–2006 synthetic
warming trend using the SI (Fig. 8). In the pre-XBT
area of sampling, 1955–66, the warming estimates range

FIG. 6. Annual global integrals of synthetic OHCA in the upper
750 m estimated from AVISO SSH. When computed from the
entire AVISO record (thick gray line) the OHCA curve has a
linear trend of 0.9 ! 0.1 W m"2, a linear trend of 0.8 ! 0.1 W m"2

when computed from the integrals of subsampled synthetic
OHCA (thin dashed line), and a linear trend of 1.0 ! 0.1 W m"2

when computed from the WI of subsampled synthetic OHCA
(thick dashed line). These curves are based solely on SSH and
therefore do not reflect the true warming rate of the upper ocean.
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from 10%–50% of the complete synthetic trend. The
fraction of the synthetic trend estimated from the SI
increases slowly to about 75% of the complete synthetic
trend from 1967–2003. It is not until the Argo array
approaches sparse global coverage in 2004 that the syn-
thetic warming trend estimated from the SI for that
year’s sampling pattern is within the 95% confidence
interval of the complete synthetic warming rate. The
95% confidence interval for the synthetic linear trend
estimated from the SI stays near !0.1 W m"2 for all of
the 53 yr of data coverage (Fig. 8, bottom).

Estimates of the global synthetic warming trend in
annual upper OHCA from the WI (Fig. 8, top) are
always within the confidence interval on the WI (Fig. 8,
bottom). For pre-1967 sampling patterns, the synthetic
trend estimates from the WI oscillate noticeably about
the complete synthetic estimate. For post-1967 sam-
pling patterns, the synthetic trend estimates are re-
markably close to the complete synthetic trend. While
the WI produces an estimate closer to the complete
synthetic trend, the process of dividing by fraction of

“observed” area (see appendix) can significantly in-
crease the 95% confidence intervals for that estimate
(Fig. 8, bottom). This increase is largest when the data
coverage is sparsest. For instance, the 95% confidence
intervals for the trend estimate from the WI for the
1955 sampling pattern are 7 times larger than the con-
fidence intervals for the trend from the fully resolved
dataset. As the data coverage increases, the confidence
interval on the synthetic trend estimated from the WI
decreases, reaching twice the complete synthetic level
in 1967 and finally approaching the complete synthetic
level by the 1990s.

5. 3–13-yr trends

The method of computing the integral also affects
how well the historical in situ sampling patterns repro-
duce linear warming trends over intervals between 3
and 13 yr. As for the 13-yr trend, the fidelity and con-
fidence intervals for warming trends over these shorter

FIG. 7. Same as in Fig. 6, but for global OHCA integrals from
the AVISO SSH record subsampled at (top) 1955 and (bottom)
1995 in situ data locations. For the 1955 data distribution the trend
computed from the SI is 0.1 ! 0.1 W m"2 and 0.7 ! 0.7 W m"2

from the WI. For the 1995 data distribution the trend from the SI
is 0.7 ! 0.1 W m"2 and 0.9 ! 0.1 W m"2 from the WI.

FIG. 8. (top) Summary of 13-yr warming trends and (bottom)
their 95% confidence intervals plotted as a function of each year’s
data distribution from 1955 through 2006 for the entire synthetic
estimates of OHCA (gray lines), the synthetic estimates com-
puted from the SI (thin dashed lines), and the synthetic estimates
computed from the WI (thick dashed lines). Only the confidence
intervals for the entire synthetic estimate (bottom) are shown in
(top).
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intervals are examined by subsampling the synthetic
upper OHCA.

A composite of estimated synthetic trends is used to
examine how well different time scales are reproduced
during different eras of sampling. This analysis is per-
formed by estimating the linear trend from different
segments of the 1993–2006 13-yr synthetic upper-
OHCA curve for each sampling pattern from 1955 to
2006. The shorter the trend, the more estimates in a
particular sampling distribution. The results of these
fits are summarized by era (Figs. 9 and 10).

For all time scales, before the widespread use of the
Argo floats (1955–2003), the WI is able to reproduce
the complete synthetic trend within the confidence in-
terval while the SI produces trends that are well below
those values (Fig. 9). In the pre-XBT era, 1955–66, the
SI underestimates the complete synthetic trends by 0.6–
0.7 W m!2 for all time scales (Fig. 9, top). The WI
during that same era only underestimates the complete
synthetic trend by "0.1 W m!2, well within 95% con-
fidence intervals for the complete synthetic values. Un-

like those for the trends produced from the SI, the
confidence level on the trends from the WI is strongly
dependent on time scale. At shorter time scales, 95%
confidence limits are near 0.8 W m!2, close to the com-
plete synthetic 13-yr warming trend of 0.9 W m!2. At
longer time scales the 95% confidence intervals for syn-
thetic trends estimated from the WI approach 0.3
W m!2.

As the sampling increases during the XBT era (1967–
2003), the mean difference from the complete synthetic
warming trend also decreases (Fig. 9, bottom). The SI
produces synthetic trends that are an underestimate of
about 0.3 W m!2 at all time scales. These trends lie near
the outside edge of the 95% confidence interval. In
contrast, the linear synthetic trends produced from the
WI during the XBT era match the complete synthetic
trend within #0.01 W m!2, indicating that synthetic
trends estimated from the WI are effectively the same
as the complete synthetic trends. The means of the syn-
thetic trends produced from the WI all lie well within
the 95% confidence intervals, which, as in the pre-XBT
era, start out large (0.3 W m!2) for shorter time scales
but decrease to about 0.1 W m!2 for longer time scales.

When Argo provides near-global coverage (2004–
06), trends from the WI overestimate the complete syn-
thetic trends by about 0.05 W m!2 for all time scales
studied (Fig. 10). In contrast, synthetic trend estimates
from the SI are underestimates by about 0.1 W m!2 for
all time scales. For both methods of computing the in-
tegrals, the synthetic trends estimated by mapping sub-
sampled data agree with the complete synthetic trends
within 95% confidence intervals.

6. Sampling error

Sampling error is estimated from the standard devia-
tion of the difference between complete synthetic val-

FIG. 9. Mean differences in the true linear trend and the trend
computed from both the SI (thin dashed line) and the WI (thick
dashed line) for 3–13-yr time scales. Differences are averaged
over all possible segments of the time series for sampling patterns
from (top) 1955 to 1966 and (bottom) 1967 to 2003. Error bars are
95% confidence intervals.

FIG. 10. Following Fig. 9 but for sampling patterns from 2004 to
2006.
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ues of annual globally integrated upper OHCA and
estimates based on the SI or WI (Lyman et al. 2006).
Because the datasets have been updated, a slightly
more stringent QC has been employed, and 2 more
years of delayed-mode AVISO data have been added
since that study, the sampling errors presented here for
the SI are slightly larger than those shown in Lyman et
al. (2006). Sampling errors computed from the WI are
less than those computed from the SI for most of the
record (Fig. 11). The larger errors from the SI are a
reflection of the large underestimates of the trends (see
section 3).

Over both the pre-XBT and XBT eras, the SI pro-
duces sampling errors that are about twice those of the
WI. The exception is 1955, when the noise introduced
by use of the WI is larger than that introduced by the
underestimated trend. From 2004 to 2006, as global
coverage increases, the two estimates converge.

Sampling error decreases as the sampling area in-
creases. Sampling error starts out high in 1955: 50 zeta
joules for the SI and 60 zeta joules for the WI. As XBTs
come into wide use after 1967 sampling errors level out
near 20 zeta joules for the SI and 10 zeta joules for the
WI. Finally, with the Argo array approaching its target
of near-global sampling with 3000 profiling CTD floats,
the different estimates of the sampling error overlap
near 5 zeta joules in 2005 and 2006.

7. Discussion and conclusions

Irregular sampling of the earth’s oceans from 1955 to
2006 impacts estimates of interannual-to-decadal trends
of global integrals of upper OHCA. The impact de-
pends on the method used to estimate the global inte-
grals. Integrals of annual maps made from an OHCA

proxy between 1993 and 2006 using sampling patterns
from a given year are computed using two different
methods. Synthetic warming trends in the global inte-
gral of upper OHCA on time scales between 3 and 13 yr
are significantly underestimated using the SI but are
consistently estimated within 95% confidence limits us-
ing the WI based on 1993–2006 AVISO SSH. From
2004 through 2006, as Argo approaches global cover-
age, the estimates of synthetic trends using either
method with those years’ sampling patterns converge
and agree with the complete synthetic estimates within
95% confidence intervals.

For the spatial patterns observed in SSH from 1993
to 2006, there is not sufficient in situ data coverage
before 1967 to estimate the global integral of synthetic
upper OHCA, regardless of the method used to com-
pute the spatial integral. For sampling patterns from
this pre-XBT era, spatial integrals based on the SI
grossly underestimate the synthetic trend for 1993–2006
by 0.7 W m!2 or 70% (Fig. 8). On the other hand, the
WI masks the complete synthetic trend by increasing
the statistical error on the linear fit. This masking is
seen in the increase in the 95% confidence interval to
0.6 W m!2, or 66% of the synthetic slope, for the 1955
sampling pattern (Fig. 8). Given pre-XBT sampling pat-
terns, neither of these methods is adequate to estimate
the complete synthetic 13-yr linear trend of 0.9 " 0.1
W m!2.

After the introduction of the XBT, but before Argo
began providing global coverage (1967–2003), the sam-
pling density increased and the errors on the synthetic
trend decreased, so that the 95% confidence interval
for the 13-yr warming trend was about 0.1 W m!2 using
either the SI or the WI. During this era, the SI signifi-
cantly underestimates the 13-yr synthetic trend by 0.3
W m!2 or 30% (Fig. 8). Conversely, the WI accurately
reproduces the 13-yr synthetic trend within the 95%
confidence interval.

For the most recent sampling distribution (2004–06),
with Argo approaching the goal of near-global sam-
pling, the annual global integral of OHCA is accurately
estimated at all scales regardless of spatial integration
method (Fig. 10). The WI tends to slightly (but statis-
tically insignificantly) overestimate the trend by 0.07
W m!2 during the Argo sampling era. This slight dis-
crepancy could be due to an overestimate of the error
energy used in the objective maps or because under-
sampled regions warmed at a slower rate than well-
sampled regions.

Of the two methods for computing global integrals
considered in this paper, the WI appears to produce
more accurate estimates of the global integral of syn-
thetic OHCA than the SI. This is not surprising, in that

FIG. 11. Sampling error computed following Lyman et al. (2006)
from synthetic estimates of globally integrated OHCA both for
the SI (thin dashed line) and the WI (thick dashed line) for each
year’s data distribution.
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the WI assumes that unsampled regions of the world’s
ocean warm at the same 13-yr warming rate as the
sampled regions. While this is clearly not true on small
spatial scales or for times when the ocean is well
sampled (2004–06) (Harrison and Carson 2007), this
assumption seems to hold on large spatial scales over
decades (Levitus et al. 2000) and is consistent with
analyses showing that the Southern Ocean, the largest
undersampled area, has warmed since the 1950s (Gille
2002).

An additional infill experiment was performed on
Argo data from 2004 to 2006 to determine how well the
global integral matched the integral of OHCA over the
Southern Ocean (the oceans south of 30°S). Using a
climatology based on the World Ocean Database 2005
both the SI and WI were computed removing Argo
data in the Southern Ocean (not shown). These results
were compared to the SI over the whole Argo dataset.
As with the synthetic OHCA, the WI produced a more
realistic value of the globally integrated OHCA than
the SI.

These results suggest that the WI is the preferable
method for estimating historical OHCA global inte-
grals at annual time scales. However, it is important to
remember that these results are based on how well in
situ sampling reproduces trends in AVISO SSH anoma-
lies, which are here scaled for use as a proxy for upper
OHCA or over short time scales. It seems likely, for
example, that the global integral of SSH includes a sig-
nificant large-scale freshwater component in addition
to thermosteric expansion (Wunsch et al. 2007). It is
also conceivable that interannual variability in globally
integrated OHCA may be underestimated by the
SSHA proxy. If this were true, the statistical error in
the 13-yr trend from the WI would be disproportion-
ately underestimated compared to the error on the 13-
yr trend computed from the SI.

While it may not be certain that the WI is preferable,
it has been shown that the two integration methods can
produce significantly different results, both of which
should be used in examining historical trends in OHCA
if for nothing more than to quantify the sensitivity of
the estimates to different methods of computing global
integrals.

Sampling errors from 1967 to 2006 are adequate to
estimate synthetic trends in OHCA (Fig. 11). Prior to
1967, both methods produce large errors in globally
integrated upper OHCA, reaching 60 zeta joules in
1955 with the WI. The errors computed from the WI
are likely a more realistic representation of the syn-
thetic sampling error than those from the SI, in that the
errors computed from the WI come from the scatter

about the complete synthetic value, whereas the errors
from the SI are related to its underestimation of the
synthetic warming trend.

In terms of the sampling errors, in situ sampling pat-
terns from 1967 to 2006 appear to be adequate to esti-
mate trends in globally integrated upper OHCA, espe-
cially if the WI is used for the pre-Argo years when
coverage was not truly global. However, sampling er-
rors are only one portion of the error budget. Biases in
the mean climatology, variability not represented in the
1993–2006 synthetic OHCA, and instrument biases that
are difficult to detect and quantify could be large
(AchutaRao et al. 2007; Gouretski and Koltermann
2007; Willis et al. 2007; Wunsch et al. 2007). Currently
the structure of the globally integrated OHCA curve is
uncertain, primarily due to an apparent temporal bias
in the expendable bathythermograph (XBT) data
(Gouretski and Koltermann 2007) that is plausibly ow-
ing to temporal variations in XBT fall rates (Wijffels et
al. 2008), along with a correctable error in about 7% of
the Argo profiling floats (Willis et al. 2007, 2008). It
appears that rectification of these biases will act to re-
duce interannual variability in the OHCA curve, but
the best corrections may not yet be established. For
these reasons, an in situ estimate of the global integral
of OHCA is not computed here.
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APPENDIX

Two Global Integrals

An ideal global integral can be defined as !i"0, I
j"0, J

truei, jdAi, j " It , where It is the true integral and truei, j
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the true value that represents the area dAi, j at a loca-
tion i, j. The true field can be separated into a spatial
mean and anomaly, truei, j ! true"i, j # mt , calculated
over A, the area of the ocean, and true"i, j are the spatial
anomalies relative to a true spatial mean, mt , such that
$i!0, I

j!0, J
true"i, jdAi, j ! 0. Hence,

It ! mtA, %A1&

where mt is estimated from the set of k observations,
obsk.

Given the spatial distribution of obsk, an objective
mapping (e.g., Wunsch 1996) can be defined, 'obsk(

i, j
,

where ' (
i, j

is an objective map to a location i, j. The
spatial integral of the mapped observations is then

Io ! $
i!0, I
j!0, J

'obsk(
i, j

dAi, j. %A2&

a. Simple integral (SI)

The simplest way to define a spatial integral is in
terms of an area-weighted integral of the mapped ob-
servations, or

It ) Io. %A3&

This is equivalent to defining the spatial mean on the
map grid as 'obsk(

i, j
* 'obs"k(

i, j
# mmap, such that $i!0, I

j!0, J
'obs"k(i, jdAi, j * 0, and mmap is the mean of the map.
When substituted into (A2) these equations yield

mmap !
Io

A
. %A4&

If mt is estimated by mmap, then by substituting (A4)
into (A1) yields (A3), the SI. This method intrinsically
assumes that the data distribution is adequate to pro-
duce maps resolving the global integral.

b. Weighted integral (WI)

If correlation length scales used in the objective map-
ping are small compared to spatial scales of the gaps in
the distribution of data, or if data are too few to over-
come the noise-to-signal ratio used, the mapping will be
inadequate in resolving the global integral. To circum-
vent this problem, larger scales could be added to the
correlation length scale; however, there is no obvious
physical basis for these additions, and they would lead
to vastly larger matrices that would require significant
computing resources to invert. An alternative option
is to define a mean only where there are data, obsk !
obs+k # mrep such that $i!0, I

j!0, J
'obs+k(i, jdAi, j * 0, and mrep

is a representative spatial mean. Noting that mrep is a
spatial constant, (A2) can be rewritten as

Io ! mrep $
i!0, I
j!0, J

'1k(
i, j

dAi, j , %A5&

where '1k(
i, j

is an objective map to location i, j where the
data at positions k have been replaced by the value 1.

If mt is estimated by mrep, then by substituting (A5)
into (A1) the true spatial integral can be estimated by
the WI [a weighted version of the simple integral (A2)]:

It )
IoA

$
i!0, I
j!0, J

'1k(
i, j

dAi, j

. %A6&

The map

'1k(
i, j

! the fractional “observed” area for a given data

distribution, obsk, and, %A7&

$
i!0, I
j!0, J

'1k(
i, j

dAi, j

A
, %A8&

the weights, represent the fraction of the globe “ob-
served.”

Equation (A8) is an objective way to estimate the
fraction of the “observed” ocean used in a global inte-
gral. It is equivalent to only integrating the “observed”
ocean and then scaling the result by the area of the
whole ocean. As mentioned in the introduction, similar
calculations have been done before. The difference
here is that the “observed” area of the ocean is defined
by the scales, error energies, and techniques used in the
mapping.

Hence, changing the mapping techniques or param-
eters would alter the fraction of the observed ocean. In
the case shown in the paper the correlation length
scales and time scales are representative of the upper
ocean. For deep variability it might be appropriate to
increase these scales, which would result in an increase
in the fraction of the ocean observed. Additionally, it
might be interesting to examine longer time scales,
which would increase the number of observations in a
given integral, also increasing the fraction of the ocean
“observed.” This exercise might result in an “observed”
coverage that is adequate before 1967.
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